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Abstract

An improved low Reynolds number ky±~Ey turbulence model is proposed to model the thermal ®eld without the

explicit prescription of the turbulent Prandtl number. The model is designed to conform with the near-wall
characteristics obtained with direct numerical simulation data, but also to possess correct asymptotic behavior in the
vicinity of the wall. The asymptotic limits of equations, governing the temperature variance (ky) and its dissipation
rate �~Ey�, are satis®ed by the incorporation of the viscous dissipation related terms. The performance of the

proposed model is evaluated by applying to fully developed channel ¯ows with and without wall transpiration, and
the thermal entrance region of a duct. The computations are validated against measurements and direct numerical
simulation data and the predicted results indicate that the proposed model is capable of reproducing the complex

near-wall thermal ®eld considered. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In predicting the turbulent heat transfer, the most

commonly adopted approach is to model the turbulent

heat ¯ux with the Boussinesq approximation and the

thermal di�usivity is usually adopted to be pro-

portional to the ratio of the turbulent viscosity and a

constant turbulent Prandtl number. This approach

assumes that a direct analogy between eddy di�usiv-

ities of momentum and heat exists. However, the

detailed dynamic and thermal ®eld data from the direct

numerical simulation indicated that the turbulent

Prandtl number varied over a broad range across the

¯ow®eld [1,2], contrary to the commonly assumed con-

stant value. It was further argued that in order to cal-

culate the turbulent heat transfer in wall shear ¯ows

correctly, the constant turbulent Prandtl number

assumption has to be relaxed [3]. Therefore, it is highly

desirable to formulate a turbulent heat transfer model

which is capable of adapting the variation of turbulent

Prandtl number in response to the variation of Prandtl

number and ¯ow structure in a wide range of complex

¯ows.

One approach is to solve the transport equations of

heat ¯ux directly. However, this requires the adoption

of Reynolds stress model in the dynamic ®eld and the

modelling of the heat ¯ux equation is complex and not

always straightforward. An alternative is to adopt the

gradient transport of heat ¯uxes and the thermal di�u-

sivity is made function of dynamic and thermal time

scales. This is achieved through the solution of two ad-

ditional equations which govern the transport of tem-

perature variance and its dissipation rate. This

approach avoids the prescription of the turbulent

Prandtl number, explicitly.

It was indicated [4] that a marked improvement over

the wall function approach in predicting the local heat
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Nomenclature

b, c, d constant
C model constant
C convection term

Cf friction coe�cient, tw/(rU
2
m/2)

Cp speci®c heat at constant pressure
D viscous di�usion term

F injection rate, v0/Um

f damping function
fl wall-damping function for turbulent heat di�usivity

fm wall-damping function for eddy-viscosity equation
h channel height
k turbulent kinetic energy
ky temperature variance

Nu Nusselt number
P mean pressure
P production term

Pr Prandtl number
qw wall heat ¯ux
R time scale ratio, �ky=~E y�=�k=E�
Rt turbulent Reynolds numbers, k2=nE~
Ret Reynolds numbers based on the wall friction velocity, Utd/n
Sy viscous dissipation term, m� @Ui

@x j
� @Uj

@x i
� @Ui

@ x j

T turbulent di�usion term
U mean velocity
Ut friction velocity,

����������
tw=r
p

u ¯uctuation velocity

v0 wall-normal velocity
x physical coordinate of the orthogonal grid
y distance normal to the wall

y+ dimensionless wall coordinate, yUt/n.

Greek symbols
a thermal di�usivity
g dissipation term

d half channel height, 1
2h

dij Kronecker delta
E total turbulent dissipation rate
~E isotropic dissipation rate
Ê `wall' dissipation, Eÿ ~E
Ey dissipation rate of temperature variance

Y mean temperature
Yt friction temperature, qw/rCpUt

y ¯uctuating temperature
m dynamic viscosity

n kinematic viscosity, m/r
P pressure di�usion term
r mean density

s Prandtl number
tm mixing time scale
tw wall shear stress.
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transfer coe�cients can be achieved by the applications
of the low Reynolds number turbulence models in the

near-wall region. This is partly due to the su�ciently
resolved turbulence transport processes and conse-
quently the heat transfer characteristics in the vicinity
of the wall. Especially in high Prandtl number ¯uids,

the conductive sublayer is so thin that the turbulent
heat transfer is more a�ected by the velocity ¯uctu-
ations in the viscous sublayer.

Several proposals [3,5] had been made, but due to
the lack of detailed and reliable measurements of the
near-wall dynamic and thermal structure, the forms of

the model were based on ad hoc adjustments of the
model constants and damping functions to reproduce
the dynamic and thermal ®elds. One commonly found
defect of the models is the adoption of y+ in the

damping function which is known to cause problem in
the separating ¯ows where at the reattachment point
the wall shear stress is zero.

The arrival of direct numerical simulation (DNS)
[1,6±8] shed some light on the detailed ¯ow structure
in the near-wall region, and the detailed energy bud-

gets derived from the DNS data provide a route
towards the modelling of wall turbulence. Further, the
asymptotic analysis, which is supported by DNS data,

provides a powerful tool in analyzing the forms of the
models. However, few of the many proposed models
completely satisfy the asymptotic limit and the DNS
data. For example, it was commonly found that the

predicted dissipation rate of temperature variance (Ey)
reached its maximum value somewhere inside the vis-
cous sub-layer [3]. However DNS data indicate that

the local maximum value of dissipation rate of tem-
perature variance should be located at the wall itself.

The aforementioned defect of the model predictions
is also frequently encountered in the prediction of a

turbulence kinetic energy dissipation rate in which
most turbulence models predicted a mislocated local
maximum at the wall [9]. Based on the DNS data and
asymptotic analysis, Kawamura [10] argued that the

traditionally modelled equations for turbulent kinetic
energy and its dissipation rate are not balanced in the
asymptotic state and that the inclusion of pressure dif-

fusion was found essential. This has motivated Hwang
and Lin [9] to propose a low Reynolds number k±~E
model for the dynamic ®elds. Key features of the

model are the adoption of the Taylor microscale in the
damping function and the inclusion of pressure di�u-
sion terms in the turbulent kinetic energy (k ) and dissi-
pation rate �~E � equations.
In the present paper, the similar approach is

employed to analyze the ky and ~E y equations and an
improved and unsophisticated model is proposed to

model the thermal ®eld. Cases considered are fully
developed channel ¯ows, with and without wall tran-
spiration, and the thermal entrance region of a duct.

For the transpired ¯ows, even though the magnitude
of the transpiration rate is low compared to the main-
stream, it signi®cantly changes the surface skin friction

as well as turbulence quantities near the wall. This
complex dynamic and thermal ®eld possess severe test
of the model, and the developing thermal ®eld within
the fully developed ¯ow provides a critical evaluation

of the model performance due to that the dynamic and
thermal ®elds are not similar, and hence the Reynolds
analogy is strictly not applicable. These computations

are validated against measurements and direct numeri-
cal simulation data.

Subscripts
b, t bottom/top wall
i, j, k tensorial direction indices

i, s injection/suction side
m bulk mean
0 inlet condition

t turbulent
w at the wall
y for thermal ®eld

l normalized on Taylor microscale.

Superscripts
+ non-dimensionless quantities
' ¯uctuations.

Mathematical symbol
( ) time-averaged value.
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2. Governing equations

The Reynolds-averaged continuity, Navier±Stokes
and temperature equations can be written as,
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� 0 �1�
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r
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� @
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�
n
�
@Ui
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� @Uj

@xi

�
ÿ uiuj

�
�2�

@UjY
@x j

� @

@x j
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@Y
@x j
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�
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rCp

�Sy � S 0y� �3�

where n and s are kinematic viscosity and Prandtl

numbers, respectively.

Sy � m
�
@Ui

@x j
� @Uj

@x i

�
@Ui

@x j

and

S 0y � m
�
@ui
@x j
� @uj
@x i

�
@ui
@x j
� rE

denote the viscous dissipation terms [11].
In the temperature equation, the viscous dissipation

term is generally small in the high Reynolds number
regime of the ¯ow ®eld and is often neglected.

However, the near wall viscous dissipation might be
high, especially in the high speed ¯ow, and this term
should be retained for more analysis.

Within the framework of eddy-viscosity and adopt-
ing Boussinesq approximation, the Reynolds stress and
heat ¯ux are approximated as,

ÿuiuj � nt

�
@Ui

@xj
� @Uj

@x i

�
ÿ 2

3
dijk �4�

ÿujy � at

@Y
@x j

�5�

where nt and at are turbulent kinematic viscosity and
thermal di�usivity, respectively.

In the present applications, the turbulence model
adopted is the kÿE [12] and kyÿEy model [5]. When
applying the model towards the wall, the contribution

of molecular viscosity on the shear stress increases,
and the standard high Reynolds number turbulence
model must be modi®ed to account for the diminishing

e�ect of the near-wall turbulence levels. The construc-
tion of the low Reynolds number model is the focus of
the next section.

3. Near-wall modelling

3.1. k±E~ model for dynamic ®eld

In the present approach the turbulence is described

by the eddy viscosity model which solves the transport
equations for turbulent kinetic energy and turbulent
dissipation rate. The present approach decomposes the

dissipation rate into two parts, i.e. E � ~E � Ê, and
adopting ~E as the dependent variable, and Ê is de®ned
as: Ê = 2n�@ ���

k
p
=@x j �2. The advantage of this approach

is that ~E reaches zero at the wall, i.e. Ew = Êw =
2n�@ ���

k
p
=@x j �2w [12], and ~E equals E at about y+>15.

The adopted model is designed to conform with the
near-wall characteristics obtained with direct numerical

simulation data, but also to possess correct asymptotic
behavior in the vicinity of the wall. Key features of the
model are the adoption of Taylor microscale in the

damping function and the inclusions of the pressure
di�usion terms [10] in both k and ~E equations which
ensure the asymptotic limits to be satis®ed. Based on

the above approach, an improved low Reynolds num-
ber k±~E model [9] was proposed and takes the form as,

nt � 0:09fm
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@x j

#
ÿ uiuj

@Ui

@x j
ÿ �~E � Ê�
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where yl � y=
����������
nk=~E

p
and

����������
nk=~E

p
is the Taylor micro-

scale. The damping functions of the model are set to
be:

fm � 1ÿ exp�ÿ0:01yl ÿ 0:008y3l�

sk � 1:4ÿ 1:1 exp

�
ÿ yl

10

�

sE � 1:3ÿ 1:0 exp

�
ÿ yl

10

�
:

The adoption of yl avoids the obvious defect, i.e. the
singularity occurring at the reattaching point by
adopting y+=Uty/n. Practically, yl=y=

����������
nk=~E

p
=
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y=��k3=2=~E �=R1=2
t � could serve as a length-scale damping

factor when approaching the wall, and accounts for

the wall-proximity size of eddies which are of the order
of the wall distance, y. Simultaneously the damping
functions above are chosen to retain the high Reynolds

number form away from solid boundaries. The asymp-
totic values of turbulent Prandtl number sk and sE are
adopted as 0.3 [9,13] to obtain su�cient dissipation

rate in the vicinity of the wall. In the core region of
the ¯ow, sk>sE is chosen to eliminate the common
drawback that turbulent di�usion of k overwhelms

that of E [14].

3.2. ky±~E y model for thermal ®eld

By adopting the Boussinesq approximation, the tur-
bulent heat ¯ux can be approximated as,

ÿujy � at

@Y
@x j

and the thermal di�usivity is traditionally modelled as,

at � nt

Prt

where Prt is the turbulent Prandtl number. This

approach requires the explicit prescription of the value
of the turbulent Prandtl number and the commonly
adopted approach is to assume a constant value which

was generally taken to be 0.9 [12]. However, as indi-
cated in the direct numerical simulation data [1,2], the
turbulent Prandtl number is not constant, and the

thermal di�usivity is not necessarily related to the
eddy di�usivity [5].
Alternatively, based on the dimensional approach,

the thermal di�usivity, at, can be expressed as a func-

tion of velocity scale �k1=2� and the mixing time-scale
(tm) [5,15],

at � nt

Prt

� Clflk
1=2k1=2tm �9�

where the form of tm varies, but usually is deemed to
be a function of

R � ky
~Ey

�
:
k

~E
,

which is the ratio of the thermal and mechanical
time-scales. ky � y2=2 is the half variance of

temperature and ~E y = a�@y=@x j �2 ÿ 2a�@ �����
ky
p

=@xj �2 is
the dissipation rate of the variance of temperature.
In the present approach, the form of the mixing

time scale adopted is tm � k=~E
�����������
Pr=R
p

, which is
designed to well reproduce the DNS data in the core
region [16]. At the same time it requires the solution of

two extra transport equations ky and ~Ey and the con-
struction of the modelled equations are detailed below.

The equation for half temperature variance
ky � y2=2 equation takes the form [11],
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Before examining the asymptotic behavior of the indi-
vidual terms in the above equation, it is bene®cial to

look into the asymptotic values of the instantaneous
components with respect to wall distance y,

y � b4y� c4y
2 � d4y

3 � � � �

ky � y2

2
� 1

2
b24y

2 � b4c4y
3 � � � �

� 1

2
byy

2 � cyy
3 � dyy

4 � � � �

Ey � a
�
@y
@xj

�2

� aby � 4acyy� dfy
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Êy � 2a

 
@

�����
ky
p
@x j

!2

� aby � 4acyy� d̂fy
2 � � � �

~E y � Ey ÿ Êy � �df ÿ d̂f�y2 � � � �

The above variations are based on the isothermal wall
condition and hence vanishing temperature ¯uctuation

is assumed to prevail at the wall [15]. By inserting the
y dependent quantities into the ky equation, it can be
easily veri®ed that the dominant terms in the vicinity

of the wall are,

Dky � aby � 6acyy� 12adyy2 � � � � �11�

ÿEy � ÿaby ÿ 4acyyÿ dfy
2 � � � � �12�

PkyAy: �13�

To keep the asymptotic limits balanced up to the ®rst
order term, the viscous dissipation function term, Pky

,
can be modelled as,
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This ensures the satisfaction of the asymptotic limit in the transport equation up to the ®rst order term in the near
wall region.
Next, attention is directed to the equation governing the dissipation rate of temperature variance. The exact

equation for temperature variance dissipation rate Ey = a�@y=@x j �2 equation takes the form [11],
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Here, similar to that adopted in the k±~E modelling, the Ey is decomposed into two terms, i.e. Ey � Êy � ~Ey and ~Ey is
adopted as the dependent variable. Again, the advantage of this choice is that the value of ~Ey is zero right at the
wall, because at the wall Ey is equal to Êy. The transport equation of ~Ey is generally modelled as [5],
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In the vicinity of the wall, convection CEy, turbulent
di�usion TEy, production PEy and dissipation gEy terms

go to zero very rapidly. The asymptotic behaviors of
the remaining terms are:
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Here the inclusion of the PEy term just compensates
DEy and renders the satisfaction of the asymptotic
limits in the vicinity of the wall.

3.2.1. The proposed ky±~E y model
The proposed forms of the temperature variance (ky)

and its dissipation rate �~Ey� equations are,

at � Clfl
k2

~E

�������������
Pr

ky
~Ey
=
k

~E

vuuut �20�

@Ujky
@x j

� @

@x j

�
a
@ky
@x j

�
� @

@x j

�
at
sky

@ky
@x j

�

ÿ 1

2
a
@

@x j

"
ky
Ey

@ Êy
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The coe�cients and the damping functions adopted

are,
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The constants in the model are chosen so that the
present model retains its high Reynolds number form

[5,17] away from solid boundaries. According to the
work of Elghobashi and Launder [17], it was indicated
that the set of coe�cients,

CP1 CD1 CD2

1.8 2.2 0.8

not only gave a satisfactory account of the decay of
temperature ¯uctuation, but also delivered better

results for the thermal mixing layers. These are the
coe�cients adopted in the present study. The same
coe�cients were also adopted in the work of Nagano
and Kim [5] and Sommer et al. [3]. The coe�cient fD1

is approximated as a function of turbulence Reynolds
number, de®ned as Rt � k2=nE~ as suggested in [18].
The near wall asymptotic values, 0.3, of the turbulent

di�usion coe�cients sky and sEy, are determined
according to the analysis of the DNS data [19] in the
vicinity of the wall.

The adopted form of viscous damping function fl
reproduces correctly the asymptotic limit, i.e. fl A y
and hence ÿvyA y 3 towards the wall. The asymptotic

satisfaction accomplishes the correct levels of Ey with
the maximum locating at the wall itself. This modi®-
cation is important to properly mimic the turbulence
levels and transfer rates toward the surface wall.

4. Numerical procedure

This scheme solves discretised versions of all
equations over a staggered ®nite-volume arrangement
[20]. The principle of mass±¯ux continuity is imposed
indirectly via the solution of pressure±correction

equations according to the SIMPLE algorithms [21].
The ¯ow-property values at volume faces contained in
the convective ¯uxes which arise from the ®nite-volume

integration process are approximated by the quadratic
upstream-weighted interpolation scheme QUICK [22].
Though the present case is a steady state solution, it

was found that using a time marching process, with
the CFL number being 1, will enhance stability. The
solution process consists of a sequential algorithm in
which each of the seven sets of equations, in linearised

form, is solved separately by application of an alter-
nate-direction tri-diagonal line-implicit solver. The
number of ADI sweep adopted in each equation is 5,

except in the pressure correction equation, in which
the number of sweep employed is 10.
It was found that the employment of the third order

approximation of the surface derivatives arising from
the viscous and pressure di�usion processes is essential
in reproducing the correct ¯ow near-wall asymptotic

behavior, by ensuring that the derivative is evaluated
right at the surface. Convergence was judged by moni-

toring the magnitude of the absolute residual sources
of mass, momentum and temperature, normalised by
the respective inlet ¯uxes. The solution was taken as

having converged when all above residuals fell below
0.01%.

5. Results and discussions

5.1. Fully developed channel ¯ows

5.1.1. Dynamic ®eld

Before proceeding to the discussion of the perform-
ance of the proposed ky±~Ey model, it is bene®cial to
examine ®rst the accomplishment of the dynamic k±~E
model. The focus here is concentrated on the perform-
ance of the model in a simple geometry, i.e. fully devel-
oped channel ¯ow at Ret (=Utd/n )=150, based on the

wall friction velocity Ut, the channel half width d and
the kinematic viscosity n. The predicted results are
contrasted with the DNS data [7]. Computations with
grid densities of sizes 60, 100 and 160, which is non-

uniform in the direction normal to the wall, were used
to check the grid independence. Preliminary results
indicated that the three meshes produced nearly identi-

cal results, therefore, the 60 grid was used for all sub-
sequent calculations. To ensure the resolution of the
viscous sub-layer, more grid points were clustered in

the near wall region, and the ®rst grid node near the
wall was generally placed at y+ 1 0.1. However, it
was found that, if the correct asymptotic behavior is to

be achieved, the ®rst grid node should be at least
located at y+1 0.01.
The predicted mean velocity pro®les are shown in

Fig. 1. For comparison purposes, the predicted results

by the commonly adopted low Reynolds number
models of Launder and Sharma [referred as LS [23],
and of Chien [referred as CH] [24] are also included.

By observing Fig. 1, it can be seen that predicted vel-
ocity by the present model achieves reasonable agree-
ment with the DNS data, though there is a slight

underprediction of the U+ at about y+=100. The
predicted turbulence kinetic energy and its dissipation
rate are shown in Figs. 2 and 3. The superior perform-
ance of the proposed dynamic model can be clearly

seen from the predicted level of turbulence dissipation
rate with the correct maximum level of the property
locating at the wall. The correct level of k and E pre-

dicted by the proposed dynamic model, ensures the
correct dynamic time scale, k/E returned by the model.
The performance of the dynamic model to the elev-

ated Reynolds numbers are further examined. Fig. 4
shows the variation of the predicted skin-friction coef-
®cient Cf with the Reynolds number Rem, which is
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based on the bulk velocity and channel height. The
predicted skin-friction coe�cients are scrutinised by
comparing the predicted results with two empirical for-
mulae [26,27]. It can clearly be seen that the predicted

results agree well with the Dean's formula at
Rem<105 and Zarbi's results at Rem>105. The
validity of the proposed dynamic model to elevated

Reynolds number is further ascertained.

5.1.2. Thermal ®eld with internal heat source

The performance of the proposed ky±~E y model is
then contrasted with the DNS data [1] of the fully
developed channel ¯ow with constant wall temperature

and internal heat source at Ret=180, based on the
wall friction velocity Ut, the channel half width d and
the kinematic viscosity n. DNS results with three di�er-
ent Prandtl numbers, Pr=0.1, 0.71 and 2.0, were

reported [1].

Predicted temperature pro®les with various Prandtl
number ¯uids are presented in Fig. 5. With decreasing
Prandtl numbers, one can see an expansion of the

region where Y+=Pr y+ holds, which indicates the
thickening of the conductive sublayer. Ultimately, at

very low Prandtl numbers, the logarithmic region dis-
appears. But when Pr is near unity, the logarithmic
region prevails. The proposed model delivers reason-

able predictions of the variations of the temperature
pro®les by changing the Prandtl number.
By reference to Fig. 6, which shows the predicted

turbulent heat ¯ux, it can be observed that the location
of the peak value moves further away from the wall,
when the Prandtl number decreases. Similar trends can

also be seen in the temperature variance results, shown
in Fig. 6, in which the thickening of the thermal sub-
layer is apparent in the low Prandtl number ¯uid.

These trends are well captured by the proposed model.
The predicted temperature variance is also compared

Fig. 4. Friction coe�cient of channel ¯ows.

Fig. 3. Turbulent dissipation rate distribution Ret=150.

Fig. 2. Turbulent kinetic energy distribution Ret=150.

Fig. 1. Mean velocity distribution Ret=150.
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favorably with the DNS data, shown in Fig. 7. Fig. 8

shows the predicted turbulent Prandtl numbers' distri-
butions. It can be clearly seen that the Prandtl number
is not constant, and the prediction is in reasonable

agreement with the DNS data in the near wall region.
The overall performance of the model can be evalu-

ated by examining the predicted budget of temperature

variance of Pr=0.71, shown in Fig. 9. It should be
pointed out that DNS data at Ret=180 [6] lack
detailed ky budget, therefore the predicted results are
compared with the DNS results [7] at Ret=150. The

predicted results show good agreement with DNS
data. Both predictions and DNS indicate that the ky
budget is in general dominated by the production and

dissipation away from the wall. In the vicinity of the
wall, the dissipation rate balances the viscous di�usion
process. It should be pointed out, while most models

predicted a misplaced maxima of the dissipation rate

Ey, the proposed model predictions indicate that Ey is
maximum at the wall and this agrees what the DNS

data show. This success is partly attributed to the sat-
isfaction of the asymptotic limits in the vicinity of the
wall.

5.1.3. Prandtl and Reynolds number e�ects on Nusselt
number
This section addresses the capability of the proposed

model to mimic the responses of the Nusselt number
to the variation of the Prandtl number and Reynolds
number in the fully developed channel ¯ows. Fig. 10

shows the changes of the Nusselt number to the vari-
ation of the Prandtl number at Ret=150. The empiri-
cal function for pipe ¯ows [28] is also included for
comparison. The Prandtl number dependence is well

captured by the present model, and the constant turbu-
lent Prandtl number approach fails at low Prandtl
number. The capability of the model to predict the

Fig. 8. Turbulent Prandtl number distributions with di�erent

Prandtl number ¯uids.

Fig. 7. Temperature variance distributions with di�erent

Prandtl number.

Fig. 6. Turbulent heat ¯ux distributions with di�erent Prandtl

number.

Fig. 5. Mean temperature distributions with di�erent Prandtl

number.
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Reynolds number dependence on the Nusselt number
in the fully developed channel ¯ow is further examined

and the cases considered are with Prandtl number at
Pr=0.022. Fig. 11 shows a comparison between pre-
dicted Nusselt numbers and experimental data [29,30].

Again, the Reynolds number dependence of the
Nusselt number is also well predicted by the proposed
model.

5.2. Flow with wall transpiration

The adoption of wall transpiration as a ¯ow control

technique is frequently encountered in a variety of en-
gineering applications. As a result of ¯uid injection
into the mainstream, a thicker boundary layer is cre-

ated and consequently the surface skin friction, and

hence, drag decreases. Suction, on the other hand, is
frequently used to delay the boundary-layer separation
and to inhibit the transition to turbulence. Even

though the magnitude of the transpiration rate is often
low compared to the mainstream, it does signi®cantly
change the surface skin friction as well as turbulence
quantities near the wall.

Therefore, the performance of the proposed ky±~E y
model is further contrasted with the DNS data of
channel ¯ows with wall transpiration [8] The schematic

picture of the ¯ow is shown in Fig. 12. The Reynolds
number Ret, based on the wall friction velocity Ut and
the channel half-width d, was set to be 150, where Ut

is the averaged wall shear stress on the two walls. The
mass ¯ux ratios on both walls were F=v0/
Um=0.00344, in which v0 is the wall-normal velocity

and Um is the axial bulk mean velocity.

Fig. 11. Nusselt number distributions at di�erent Reynolds

number.

Fig. 12. Geometry of channel ¯ow with wall transpiration.

Fig. 10. Nusselt number distributions at di�erent Prandtl

number.

Fig. 9. Budget of temperature variance at Pr=0.71.
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The in¯uence of the wall transpiration on the ¯ow

can be seen from the velocity distribution, shown in

Fig. 13. For comparison, the Ret=150 DNS data [25]

in a fully developed channel ¯ow without wall tran-

spiration are also shown in the ®gure. A marked di�er-

ent distribution to that without wall transpiration is

observed, and the predicted pro®le agrees well with the

DNS distribution. The e�ect of wall transpiration on

the thermal ®eld can be perceived by examining the

temperature distributions, as shown in Fig. 14. The

near wall variations of the temperature pro®le are in

reasonable agreement with the DNS data.

The asymptotic behaviors of ky and vy in the near-

wall region of the injection and suction wall, are

shown in Figs. 15 and 16. The results indicate that the

present model predicts the correct limiting behaviors,

satisfying the quadratic or cubic variation of the turbu-

lent quantities, i.e. ky0y 2, and ÿvy0y3. As shown in

Figs. 15 and 16, the present model reproduces these re-

lations accurately and gives good agreement with the

DNS data. Notably the proposed model is with an

unsophisticated form and the success is partly attribu-

ted to the satisfaction of the correct near wall asymp-

totic behaviors.

It is always bene®cial to look into the budget of

temperature variance at both of the walls to gain

further insight of the model performance. Figs. 17 and

18 show the ky budget at the injection and suction

sides, respectively. Again, both predictions and DNS

indicate the ky budget is in general dominated by the

production and dissipation away from the wall. In the

vicinity of the wall, the dissipation rate balances the

viscous di�usion process. However, the distributions of

the near wall dissipation rate Ey on the injection and

suction wall are somewhat di�erent, as indicated by

the DNS data. The energy budget at the suction side is

similar to that of the previously examined fully devel-

oped ¯ow with internal heat source, shown in Fig. 9.

Fig. 13. Mean velocity distribution.

Fig. 14. Mean temperature distribution.

Fig. 15. Temperature variance distribution.

Fig. 16. Turbulent heat ¯ux distribution.
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The local maximum of Ey is located at the wall itself.
At the injection wall, fair agreement with the DNS

data is achieved. However, the predicted value of the
dissipation rate of temperature variance does not
reproduce the decrease of the Ey when the wall is

approached, as indicated by the DNS data. Instead,
the predicted result still produces a local maximum at
the wall. The prediction seems to generate a too high

level of turbulent di�usion towards the wall. It should
be pointed out that the ratio of near wall dissipation

rate Eysuction
/Eyinjection

is about 25. This can not be observed
explicitly from Figs. 17 and 18, because the energy

budgets are normalised using the local friction velocity
(Ut) and friction temperature (Yt), which are di�erent
at the suction and injection walls. Therefore, the absol-

ute values of terms in Fig. 17 are much smaller than
those in Fig. 18.

5.3. Thermal entrance region of a duct

To further explore the model's performance in com-

plex environments, the model is applied to simulate
¯ow in a two-dimensional duct ¯ow, heated with con-
stant wall temperature. Measurements [31] of the wall
heat transfer coe�cient are available to evaluate the

model's performance. The geometry of the duct is
shown in Fig. 19. Flows with Reynolds number,
Rem=2hUm0/n=6000, were investigated, where h is the

channel height, Um0 is the average inlet streamwise vel-
ocity and n is the kinematic viscosity.
A fully developed ¯ow enters from the left hand side

of the channel. At x < 0, both the top and bottom
walls are heated with the same temperature T0, but at
x>0 the bottom wall temperature experiences a sud-

den change, as indicated in Fig. 19. Therefore, a ther-
mal entrance region exists. This case provides a critical
evaluation of the model performance, because the
dynamic and thermal ®elds are not similar, and hence

the Reynolds analogy is strictly not applicable.
Therefore, it can be expected that the constant turbu-
lent Prandtl approach should fail. By reference to Fig.

20, which shows the Nusselt number distributions at
the bottom wall, it can be seen that the present model
reproduces the correct Nusselt number distribution,

and in contrast a lower level of Nu is predicted by the
constant turbulent Prandtl number approach.

Fig. 17. Budget of temperature variance at injection side.

Fig. 18. Budget of temperature variance at suction side.

Fig. 19. Geometry of channel ¯ow with thermal entrance

region.
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6. Conclusion

A low Reynolds number two-equation ky±~E y turbu-

lence model is proposed to predict thermal ®eld with-
out the explicit prescription of the turbulent Prandtl
number. The design of the model is to possess correct

asymptotic behavior in the vicinity of the wall, and the
asymptotic limits of the ky and ~Ey equations are satis-
®ed by the incorporation of the viscous dissipation re-

lated terms. Cases considered are fully developed
channel ¯ows, with and without wall transpiration,
and the thermal entrance region of a duct. The
performance of the proposed model is contrasted with

the DNS data of the fully developed channel ¯ow with
and without wall transpiration. For the nonpermeable
wall, but with internal heat source case, the proposed

model delivers reasonable predictions of the variations
of the temperature pro®les to the changes of the
Prandtl number. The e�ect of the presence of wall

transpiration on the thermal ®eld is also correctly
reproduced by the prediction and is in good agreement
with the DNS data. Finally, the predicted Nusselt

number distribution of a developing thermal ®eld is
compared favorably with measurements.
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